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Computation of localized post buckling in long
axially compressed cylindrical shells

B y G. J. Lord1, A. R. Champneys1 and G. W. Hunt2

1Department of Engineering Mathematics, University Walk,
University of Bristol, Bristol BS8 1TR, UK

2Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

Buckling is investigated of a long thin cylindrical shell under longitudinal compression
as modelled by the von Kármán–Donnell equations. Evidence is reviewed for the
buckling being localized to some portion of the axial length. In accordance with
this observed behaviour the equations are first approximated circumferentially by a
Galerkin procedure, whereupon cross-symmetric homoclinic solutions of the resulting
system of ordinary differential equations are sought in the axial direction. Results
are compared with experimental and other numerical data. Excellent agreement with
experiments is achieved with fewer approximating modes than other methods.

1. Introduction

The buckling of a long thin circular cylindrical shell under axial compression is one
of the classic problems of structural mechanics. If overall (strut or Euler) buckling
is suppressed, experiments under rigid loading indicate a highly unstable snapback
response, as described, for example, in Donnell (1934) or Yamaki (1984), in which a
finite-amplitude buckle pattern appears instantaneously, accompanied by a dramatic
drop in load (see figure 1). In addition, the system is notoriously imperfection sensi-
tive (Koiter 1945). To quote Donnell & Wan (1950), referring to a particular set of
experiments:

Buckling comes suddenly, almost explosively, and usually occurs over only part
of the wall. . . . The number of waves around the circumference is of the order of
ten or so, and the wave shape ratio (ratio of wavelength in the circumferential
to that in the axial direction) is always close to unity, with an average value of
about 0.75.

This suggests that, while periodicity governs circumferentially, axially the buckle
pattern may localize. A standard analytical approach adopted by Koiter (1945) and
others is to assume that this pattern comprises a complex interaction of a number
of linear modes, associated with zero eigenvalues at the critical load of the perfect
system, that are periodic both axially and circumferentially. The governing equations
do indeed admit such solutions, but it has emerged recently via double-scale asymp-
totic analysis that axially localized solutions are also admissible (Hunt & Lucena
Neto 1991, 1993). Such behaviour has only been validated close to the theoretical
critical load, yet real (imperfect) shells buckle at some fraction, perhaps 25%, of
that load. This thoroughly unstable post-buckling characteristic led in the 1960s to
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a search for the so-called minimum post-buckling load that can be sustained in the
buckled regime, a quest effectively ended by Hoff et al. (1966), who demonstrated
for outright periodicity that it tends to fall to zero as shell thickness approaches
zero. This would be expected from the periodic form of the Yoshimura or diamond
pattern (Yoshimura 1930), that can be folded out of a flat sheet of paper and thus
exist at zero load without membrane stretching.

For responses that localize axially, none of these arguments need apply. The need
for non-zero membrane strain energy in a localized Yoshimura state means that
some external loading is required, and the minimum localized post-bucking load is
thus greater than zero. Hunt & Lucena Neto (1993) suggest, purely on asymptotic
grounds, that the Maxwell critical load for periodic buckling (when energy levels are
the same in the fundamental and restabilized post-buckled states) might represent a
good approximation to the minimum post-buckling load for an associated localized
response. Experimental correlation based on a small sample set (Yamaki 1984) is
good, but until now numerical confirmation away from the asymptotic limit has
been lacking.

The most widely used model for the buckling of thin cylinders rests with the von
Kármán–Donnell equations, a coupled pair of nonlinear fourth-order partial differen-
tial equations (PDEs) governing radial displacement, w, and in-plane stress function,
φ. We consider an infinitely long cylinder and discretize the von Kármán–Donnell
equations circumferentially by the Galerkin spectral method. This yields a system
of ordinary differential equations (ODEs) in the axial variable x, for which we seek
homoclinic (axially localized) solutions, with the axial length taken to be infinite.
We claim that this infinite-length approximation is valid when one seeks localized
solutions. This is confirmed below by the agreement found with experimental results
on only moderately long cylinders.

The key idea behind the direct numerical methods for computing homoclinic orbits
to equilibria is to pose the homoclinic orbit as a boundary value problem and then
use the linearization about the fundamental state to define boundary conditions with
the correct asymptotic behaviour on a truncated interval (Beyn 1990; Friedman &
Doedel 1994). The technique of reducing to a set of ODEs to find localized solutions
in elliptic equations has used by other authors, such as Mielke (1991), Hagstrom &
Keller (1987) and Kirchgässner (1982).

Here the approach is adapted to a Galerkin approximation of the von Kármán–
Donnell equations which retains circumferential periodicity. We seek solutions axially
that are cross-symmetric (symmetric in even-numbered waves and anti-symmetric
in odd-numbered waves) about a section through the cylinder, as observed experi-
mentally (Yamaki 1984); results on symmetric and other possible forms will be pre-
sented elsewhere. Buckling paths are investigated as the load parameter is varied by
numerical continuation using the code AUTO (Doedel & Kernevez 1986). A detailed
presentation of the numerical homotopies required to obtain an initial solution at
fixed load is deferred to later work.

The remainder of the paper is outlined as follows. Section 2 introduces the von
Kármán–Donnell equations and their approximation: properties of low-order approx-
imations are examined, and their numerical computation and suitability discussed.
In §3 we present numerical results for approximations of increasing order. Section 4
discusses the relevance of these results in the context of other work on cylinder
buckling, and draws some general conclusions.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Computation of localized post buckling 2139

2. The von Kármán–Donnell equations and their approximation

Consider an infinitely long cylinder of radius R and shell thickness t. The classical
equilibrium equations for the in-plane stress function φ and outward radial displace-
ment displacement w in the post-buckling regime of the cylinder are given by the
von Kármán–Donnell equations:

κ2∇4w + λwxx − ρφxx = wxxφyy + wyyφxx − 2wxyφxy, (2.1)
∇4φ+ ρwxx = (wxy)2 − wxxwyy, (2.2)

where ∇4 denotes the two dimensional biharmonic operator, x ∈ R is the axial and
y ∈ [0, 2πR] is the circumferential coordinate. The parameters appearing in (2.1)
and (2.2) are the curvature ρ := 1/R,

κ2 := t2/12(1− ν2),

where ν is Poisson’s ratio and the bifurcation parameter

λ := P/Et,

where P is the compressive axial load applied per unit length and E is Young’s mod-
ulus. Equations (2.1) and (2.2) are supplemented with periodic boundary conditions
in y and asymptotic boundary conditions in the axial direction x: that w, φ and their
x derivatives tend to zero (the fundamental solution) as x→ ±∞.

A standard periodic analysis of the von Kármán–Donnell equations is to seek the
minimum load and corresponding axial and circumferential wavelengths such that
a bifurcation occurs. Waves for which this is satisfied appear on the Koiter circle
(Koiter 1945). For a discussion of mode interaction on the Koiter circle for the von
Kármán–Donnell equations see Hunt & Lucena Neto (1991).

As stated in the introduction we perform a Galerkin approximation in the circum-
ferential direction. We seek even periodic solutions to the von Kármán–Donnell equa-
tions in the circumferential direction y and hence use the cosine functions cos(mρy),
m ∈ N ∪ {0} as the basis functions in the Galerkin approximation.

The system (2.1) and (2.2) has a rich structure of symmetries (see Golubitsky
et al. 1984; Hunt 1986; Hunt et al. 1986; Wohlever & Healey 1995). In order to
examine deformations of the cylinder that remain within the subspace corresponding
to invariance under rotation through 2π/s, we introduce a seed mode ψs1 = cos(sρy)
and let

w(y) =
∞∑
m=0

amψ
s
m, φ(y) =

∞∑
m=0

bmψ
s
m,

where
ψsm = cos(msρy), m ∈ N ∪ {0}, s ∈ N.

Substituting into the von Kármán–Donnell equations, taking the L2 innerproduct
and expanding the nonlinear terms we find the following system of ODEs:

κ2
{
∂4am
∂x4 − 2s2ρ2m2 ∂

2am
∂x2 + s4ρ4m4am

}
+ λ

∂2am
∂x2 − ρ

∂2bm
∂x2

= s2ρ2χ

{
− 1

2

∑̃
k,`,m

(
`2
∂2ak
∂x2 b` + k2ak

∂2b`
∂x2

)
−

′∑
k,`,m

k`
∂ak
∂x

∂b`
∂x

+
′′∑

k,`,m

k`
∂ak
∂x

∂b`
∂x

}
,

(2.3)
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∂4bm
∂x4 − 2s2ρ2m2 ∂

2bm
∂x2 + s4ρ4m4bm + ρ

∂2am
∂x2

= s2ρ2 1
2χ

{∑̃
k,`,m

`2
∂2ak
∂x2 a` +

′∑
k,`,m

k`
∂ak
∂x

∂a`
∂x
−

′′∑
k,`,m

k`
∂ak
∂x

∂a`
∂x

}
, (2.4)

for m = 0, 1, 2, . . . ,∞, and where

χ =

{
1
2 , m = 0,
1, otherwise.

The summations terms in (2.3) and (2.4) are defined for a given value of m by:∑̃
k,`,m

:=
∑

k+`−m=0, k−`+m=0
k−`−m=0, k,`∈N∪0

,

′∑
k,`,m

:=
∑

k−`+m=0, k−`−m=0
k,`∈N∪0

,

′′∑
k,`,m

:=
∑

k+`−m=0
k,`∈N∪0

.

The Galerkin approximation is formed by taking equations (2.3) and (2.4) for
m = 0, . . . ,M − 1 only, for some finite M . Taking s = 1 corresponds to a stan-
dard Galerkin approximation discussed, for example, in Gottlieb & Orszag (1977),
whereas s > 1 corresponds to seeking a solution in a specific subspace corresponding
to the circumferential wave number s.

Note that there is a ‘degeneracy’ in the equations for the zero mode (m = 0) such
that these could be solved with initial conditions for

∂2a0

∂x2 ,
∂3a0

∂x3 ,
∂2b0
∂x2 ,

∂3b0
∂x3 ,

independently of the initial conditions for a0, b0 and the first derivatives. This corre-
sponds to a trivial translational symmetry in the problem.

The single mode approximation found by taking M = 1 (m = 0) in (2.3) and (2.4)
yields a linear system for which there are no homoclinic solutions. Thus the simplest
approximation for which we may expect to find a homoclinic orbit is the two mode
approximation found by taking M = 2 (m = 0, 1) in (2.3) and (2.4). We truncate
the system of ODEs (2.3) and (2.4) to a large finite interval, x ∈ [0, T ] and solve as
a boundary value problem over half the length of the cylinder.

Boundary conditions are chosen at x = 0 to project out a linear approximation
to the stable manifold of ak = bk = 0. This imposes the condition that the solution
would leave the zero state along an unstable direction, as appropriate for the infinite
length case (see, for example, Beyn 1990).

At x = T we impose appropriate boundary conditions on the Fourier modes for
solving over half the length of the cylinder. A number of choices, for example those
exhibiting complete axial symmetry, are available. Here we attempt to match experi-
ments by seeking solutions that we call (axially) cross-symmetric. These are solutions
w(x, y), φ(x, y) which are invariant under the simultaneous application of x→ 2T−x
and y → y + πR/s, but are in fact produced by symmetric conditions for the even-
numbered modes and anti-symmetric conditions for the odd-numbered modes. An
example of a cross-symmetric solution may be seen in the contour plot of figure 5. In
contrast we refer to (axially) symmetric solutions as solutions which are symmetric
in y about x = T (i.e. w(x, y) and φ(x, y) are invariant under x→ 2T−x and y → y).

In the parameter regime of interest the linearization of (2.3), (2.4) about the trivial
solution yields four zero eigenvalues, (4M − 2) eigenvalues in the left half plane and
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(4M − 2) eigenvalues in the right half plane. The non–zero eigenvalues occur in
complex conjugate pairs. We see from the linearization that the equilibrium is not
hyperbolic and instead has a centre-stable and centre-unstable manifolds. However,
by inspection it is clear that these, the zero eigenvalues, and associated directions
are a consequence of the ‘degeneracy’ in the zero mode. Thus, although we solve for
the full system we consider the reduced linear problem for computing the projection
boundary conditions at x = 0. The degeneracy in the zero mode forces the boundary
conditions for that mode to be modified. The boundary value problem we solve is as
follows. Rescale (2.3), (2.4) to the interval [0, 1] and solve subject to the following.

(i) Boundary conditions at x = 0 for the zero mode (m = 0)

a0(0) = 0,
∂a0(0)
∂x

= 0, b0(0) = 0,
∂b0(0)
∂x

= 0. (2.5)

These four conditions impose that the solution is homoclinic to the flat equilibrium
state, rather than some translate of it.

(ii) Standard projection boundary conditions for the non-zero modes (m > 0) at
x = 0:

Ls(U(0)− 0) = 0, (2.6)
where

U(0) :=
[
a1(0), . . . ,

∂3a1(0)
∂x3 , . . . , aM−1(0), . . . ,

∂3aM−1(0)
∂x3 ,

b1(0), . . . ,
∂3b1(0)
∂x3 , . . . , bM−1(0), . . . ,

∂3bM−1(0)
∂x3

]T

and Ls is the matrix whose rows span the left eigenspace of the corresponding stable
(s) eigenvalues. This gives 4M − 2 conditions.

(iii) Cross-symmetric section boundary conditions at x = 1 given by

∂2a0(1)
∂x2 = 0,

∂2b0(1)
∂x2 = 0, (2.7)

∂iam(1)
∂xi

= 0,
∂i+2am(1)
∂xi+2 = 0,

∂iam(1)
∂xi

= 0,
∂i+2bm(1)
∂xi+2 = 0, (2.8)

for m = 1, . . . ,M − 1 and i = 0 if m is even and i = 1 if m is odd. These give a
further 4M − 2 boundary conditions.

In total we have 8M boundary conditions for 8M equations, which is the appropri-
ate number for a well-posed problem. This boundary value problem can be solved by
a regular continuation code, such as AUTO (Doedel & Kernevez 1986), to compute
load–deflection bifurcation diagrams as in figure 2.

Initial approximations for the boundary value problems are found using a mixture
of shooting and homotopy techniques. The details of the boundary conditions and
the numerical techniques used for initial approximations will be discussed in later
work where symmetric and other forms of solution will be considered.

3. Numerical Results

To compare with the experiments of Yamaki (1984) and the asymptotic analysis
of Hunt & Lucena Neto (1993) calculations were performed for a shell with

ρ = 0.01 mm−1, t = 0.247 mm, ν = 0.3, E = 5.56 GPa.
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λ

λ d

λ m

physical end shortening

S
N
A
P

Figure 1. Schematic representation of expected response. The straight line represents the unbuck-
led state and the curved line the buckled state. Solid lines are stable, and dashed lines unstable,
equilibrium states under rigid loading conditions.

Yamaki’s experiments were carried out for clamped cylindrical shells —we consider
here results from the longest of such shells, length L = 160.9 mm. Note that even
this could hardly be described as long, since its aspect ratio (length to diameter)
is only L/2R ≈ 0.8. Yamaki found buckle patterns which were both symmetric and
cross-symmetric; the solutions presented here will all be cross-symmetric.

We compare with experiments the minimum (Wmin) and maximum (Wmax) values
of the displacement w, and the ratios

λm/λd, β =
axial wavelength at λm

circumferential wavelength at λm
,

where λd denotes the smallest value of λ at which the fundamental solution bifurcates,
and λm corresponds to the minimum post buckling load. For the Yamaki cylinder
described above it is easily shown that λd ≈ 1.494912 × 10−3. For the numerical
simulations, λm was taken to be the first limit point on the branch of homoclinics
as the load was decreased (corresponding to the minimum of the curves in figure 2).
For the aspect ratio, β, only the axial wavelength was required from the simulations,
since the circumferential wave number and hence corresponding wavelength were
known. The axial wavelength was defined to be twice the axial distance between a
maximum and a minimum, that is twice the distance between the point P and Q on
the contour plot (figure 5). This quantity was estimated from the line y = 0.

In the bifurcation diagram (figure 2), we plot the loading parameter, λ, against a
measure of the end shortening defined by∫ ∞

−∞
|wx(x, y)|dx =

∫ ∞
−∞

∣∣∣∣ ∞∑
k=0

∂

∂x
(ak(x) cos(ksρy))

∣∣∣∣ dx,
which in general varies with y. For simplicity we take y = 0 and measure over the
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Figure 2. Bifurcation diagram showing the load parameter λ against a measure of
end-shortening δ for wave numbers s = 8, 9, 10 and 11.

Table 1. Convergence of the minimum load λm, ratio of wavelengths β and the minimum and
maximum displacements Wmin and Wmax as the number of modes in the approximation is
increased

s = 11 M = 2 M = 3 M = 4 M = 5 M = 6

λm/λd 0.1515 0.1938 0.2321 0.2436 0.2418
β 2.123 1.819 1.571 1.789 1.741

Wmin −0.742 −0.946 −1.018 −0.839 −0.866
Wmax 1.622 1.959 2.192 1.919 1.966

half length of the cylinder to get,

δ =
∫ T

0

∣∣∣∣M−1∑
k=0

∂ak
∂x

∣∣∣∣ dx. (3.1)

We use this as a measure of the end-shortening, but note that it bears no direct
relation to actual end shortening of a specimen cylinder: more physically meaningful
measures will be considered in future work. As the pure-squash component of δ is
absent from the present formulation, the ‘snapback’ phenomenon indicated in the
schematic diagram of figure 1 is only implied in the plotted bifurcation diagram of
figure 2. The λ axis of figure 2 thus corresponds to the sloped line in the schematic
figure 1. Note that in practice one would only expect to see the stable portions of
the curves, as for example in Yamaki’s experiments.

We note that in the computations below the half length of the cylinder T was either
taken to be T = 300 or, for direct comparison with Yamaki, T = 100. The values for
λm, Wmin, Wmax and β were found to be essentially independent of the length of the
interval T solved over in accordance with results of Beyn (1990), Schecter (1993) and
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Figure 3. Fourier modes ak and bk for the displacement, w, and stress function, φ, respectively,
at λ = 5× 10−4. (a), (b) As the load is decreased from λd before the minimum load λm and (c),
(d) after the minimum load λm.

Sandstede (1996). In the figures that follow, x is plotted on [0, 2T ], y is plotted on
[0, 2πR] and x, y, Wmin, Wmax and the Fourier coefficients ak are measured in mm.

(a ) Results
We compare our results to the cross-symmetric results of Yamaki (1984). For the

shell under consideration Yamaki describes in some detail the case of 11 circum-
ferential waves (s = 11) close to the minimum load λm. The case s = 11 was also
considered by Hunt & Lucena Neto (1993); although dependent on R/t, this is typi-
cal of the number of circumferential modes observed experimentally (recall the quote
from Donnell & Wan (1950) in the introduction). We present results for s = 8, 9, 10
and 11 and consider in greater detail the case s = 11.

First we examine convergence of the numerics as the number of circumferential
modes used in the approximation is increased. The computations were performed
for wave number s = 11. In table 1 we present values of λm/λd, β, and minimum
and maximum values of the displacement, Wmin and Wmax, as M is increased to a
maximum of six. We see that M = 6 appears to give convergence to one decimal
place in all four quantities. All further results presented were computed with M = 6.

In figure 2 we have plotted the bifurcation diagram of load, λ, versus end short-
ening, δ, for s = 8, 9, 10 and 11. Note from the diagram that as the circumferential
wave number decreases, the minimum load λm decreases and the end shortening at
this minimum load increases. This corresponds with experimental evidence depicted
in figure 3.52e (a) of Yamaki (1984). Unlike the experimental solutions, our numer-
ical solutions do not ‘feel’ their stability, and hence we are able to compute the
bifurcation curves back to the originating bifurcation point λd.

We next present detailed results for wave number s = 11. Figure 3 shows the
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Figure 4. At the minimum load λm. (a) Fourier modes ak for displacement w; (b) Fourier
modes bk for the stress function φ; (c) Reconstructed solution w(x, 0); and (d) φ(x, 0).

Fourier modes ak, bk, (k = 0, 1, 2, 3, 4, 5) for the displacement w and stress function
φ, respectively, before and after the minimum load λm. In (a) and (b) ak and bk are
plotted at λ = 5× 10−4 before the minimum load λm is reached (decreasing λ from
λd) and in (c) and (d) ak and bk are re-plotted at the same value of λ but after
passing through λm. Note that the solutions appear quite different. Comparing (a)
to (c) and (b) to (d) shows that the magnitude of both the Fourier modes ak and bk is
larger having passed through λm and that the Fourier modes appear more localized.

Figure 4 depicts the solution when the load λ is at the minimum load λm. In
figure 4a we have plotted the Fourier modes ak for the displacement w and in (b) the
modes bk for the stress function φ. In figure 4c we have reconstructed the solution
w(x, y) at y = 0 and in (d) we have plotted the φ(x, y) at y = 0.

Figure 5 shows the contour map of the displacement, w, plotted over the cylinder
at the minimum load λm, with the values of certain contours marked. The cross-
symmetric nature of the solution over the whole cylinder is clearly evident from
this plot. The circumferential wave number, s, is easily verified as 11 and we have
indicated on the diagram half the axial wavelength—the distance between P and Q.
The reader may wish to compare this plot to the contour plots in Yamaki (1984,
figure 3.52e (b)).

In figure 6 we have reconstructed the full solution w(x, y) and in figure 7 we have
reconstructed the full solution φ(w, y) at the minimum load λm for s = 11. In each
case contours are plotted over the deformed cylinder, with the colour bar indicating
the magnitude of w or φ. Note that the length of the cylinder is 200 mm which is
comparable to the length of the Yamaki cylinder.

We now consider the quantitative agreement with the experiments. Table 2 presents
a full comparison with the experimental and fully periodic numerical results of Yama-
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Figure 5. Contour plot for the cross-symmetric form of solution of the outward buckling dis-
placement, w, at the minimum value of the buckling load parameter λ = λm. x ∈ [0, 2T ] is the
axial coordinate and y ∈ [0, 2πR] is the circumferential coordinate. Also indicated is half axial
wavelength (PQ): details in text.
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Figure 6. Reconstructed displacement w(x, y) plotted over the deformed cylinder for s = 11.

ki (1984), and with the asymptotic results of Hunt & Lucena Neto (1993) based upon
the Maxwell concept. For the seed modes s = 10 and s = 11 we see good agreement
in the minimum load λm and also in the minimum and maximum displacements
Wmin and Wmax. However, as the wave number is decreased our results and those of
Hunt & Lucena Neto (1993) tend to drift from the experimental values; there are also
growing differences in the aspect ratio, β. For s = 9 and s = 8, the results indicate
that the six modes a0 to a5 may not be enough for convergence. Boundary condi-
tions would also be expected to have a greater part to play for the longer wavelength
modes.
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Figure 7. Reconstructed stress function φ(x, y) plotted over the deformed cylinder for s = 11.

Table 2. Comparison of results

present (Yamaki 1984) (Hunt & Lucena Neto 1993)
s M = 6 experimental periodic asymptotics

λm/λd 11 0.242 0.24 0.26 0.24
10 0.213 0.21 0.22 0.21
9 0.185 0.17 0.17 0.18
8 0.163 0.14 0.12 0.16

β 11 1.74 1.43a 1.54a 1.49
10 1.84 1.51
9 1.96 1.56
8 2.13 1.37a 1.42a 1.60

Wmin 11 −0.866 −0.9 −0.89 −1.09
10 −1.075 −1.0 −1.24 −1.36
9 −1.411 −1.56 −1.56 −1.68
8 −1.894 −1.9 −1.90 −2.15

Wmax 11 1.966 1.9 1.90 2.47
10 2.384 2.6 2.52 3.01
9 2.852 3.2 3.21 3.73
8 3.291 4.0 4.03 4.77

a Indicates that this was not at a minimum load.

A plausible explanation for why the wavelengths we observe numerically do not
match those of experiments is that there is a large sensitivity of β to the value of
λ near λm and that the experimental wavelengths given in the table are taken for
values of the load λ close to, but not exactly at, the minimum load λm (compare
figure 3.52e (b) and table 3.7 pages 231 and 232 in Yamaki (1984)). This sensitivity
can be verified from our numerics. Figure 8 shows the load, λ, plotted against the
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Figure 8. Plot of β as the load is decreased (3) to the minimum value λm and is increased (•)
past λm.

buckle pattern aspect ratio, β, for s = 11 with M = 6. As λ is decreased from the
bifurcation value λd we see that β also decreases. As λ continues through the limit
point and starts to increase, β continues to decrease. What is clear is that close to
the limit point a small variation in λ leads to a large variation in β. Indeed the curve
appears to be well fitted (in the least squares sense) close to the minimum λm by a
quartic

λp(β) = 0.0006β4 − 0.004β3 + 0.01β2 − 0.0121β + 0.0058, (3.2)
in which case the points λ (shown in figure 8) are given by λ = λp+ε where the error
ε has a maximum value of ε = 3.053 × 10−6. Furthermore we can test this against
the experiments: Yamaki (1984) found that β = 1.43, which from (3.2) suggests that
a load of λ ≈ 3.8501 × 10−4; in fact the experimental value was λ = 3.743 × 10−4.
The fast variation of the axial wavelength around the minimum value indicates that
there is a large scope for error in estimating this particular parameter and that the
data for the Yamaki cylinder is for a value of λ just past the minimum load λm.

4. Discussion and conclusion

This paper demonstrates excellent qualitative and quantitative agreement between
numerics and experiments. The agreement is particularly good considering our anal-
ysis is for an infinitely long cylinder, whereas the comparison is with a moderately
long cylinder of aspect ratio (length to diameter) of approximately 0.8. Results are
essentially independent of chosen (structural) boundary conditions, the only criterion
being that at the boundaries the solution lies either on the stable, or the unstable,
manifold. The experimental displacements and the minimum load values are well
matched by the numerics. We have shown that the axial wavelength measured by β
varies rapidly with λ around the minimum load λm, this sensitivity explaining the
discrepancy in the values of β.

Particularly good agreement is found for circumferential wave numbers s = 10 and
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s = 11; however, for s = 8 and s = 9 a slight discrepancy between the numerical
and experimental values is observed. Preliminary evidence suggests that, although
convergence is achieved for s = 11, more modes are required to fully resolve the
solution for s 6 9. Indeed Yamaki (1984) states that (p. 254) that ‘Some discrepancies
will be seen for large deformations of long shells . . . which may be attributed to the
insufficient number of unknown parameters amn retained in the calculation’. The
large deflection cases correspond exactly to the lower wave numbers s = 8 and s = 9.
Thus given the excellent agreement with six modes for the higher wave-number cases
we expect improved results with more modes for the lower wave numbers. It must
also be remembered that these results are taken at the minimum load. From AUTO
this minimum is found accurately (using the limit point detection facility) whereas
it has to be estimated both experimentally and numerically in Yamaki (1984). This
is certainly another factor in the observed discrepancies.

Our results compare favourably with the asymptotic results of Hunt & Lucena Neto
(1993) who used a 16-mode approximation of fully periodic modes, together with an
argument based on the Maxwell critical load, to distinguish a localized minimum.
In particular we seem to capture the minimum and maximum displacement much
better. This is not surprising since for the cross-symmetric solutions the maximum
displacement occurs away from the mid-length of the cylinder. Note that Hunt &
Lucena Neto also comment that more modes were required for lower wave numbers.

Our findings so far are preliminary and a more complete analysis including sym-
metric buckling patterns, and an investigation of the Maxwell load hypothesis, will
form the subject of future work. We also remark, based on preliminary unreport-
ed computations and on previous experience with simpler Hamiltonian systems
(Devaney 1976; Champneys & Toland 1993; Hunt et al. 1989) that for each mode
number, s, the existence of one localized solution implies infinitely many other
localized solutions. These are essentially multiple copies of the symmetric and anti-
symmetric solutions separated by finite axial distances. The investigation of these
multi-modal solutions is also left to future work.

One advantage of our approach is that fewer modes are required to capture the
localized buckling than was used in Yamaki (1984). For s = 10 and s = 11 our six-
mode approximation (M = 6) is as accurate as his 20-mode approximation. Another
advantage of the numerical procedures used here as opposed to a finite element
analysis (see, for example, Wohlever & Healey 1995), is that our methods are well
suited to exploring multiplicities of solution and understanding the structure not
just from the point of view of symmetries, but also from the inherent multiplicities
associated with homoclinic bifurcations (see Hunt et al. (1997) for a comparison with
finite elements in a much simpler problem).

The work in this paper lends weight to the description of the localized buckling
of long thin axially compressed cylinders as a homoclinic phenomenon. We have
obtained excellent agreement with experimental work on the longest elastic cylinder
for which detailed experimental results could be found, with only a few circumfer-
ential modes in the numerical approximation. The localization occurs naturally as
a solution to the von Kármán–Donnell equations, independently of any imperfec-
tion in the cylinder, and demonstrates that the corresponding asymptotic boundary
conditions are natural boundary conditions for long cylinders.
The authors thank E. Doedel (Concordia University) for his help in customizing the continuation
code AUTO. The research of G.J.L. was supported by a research grant from the EPSRC under
the Applied Nonlinear Mathematics Initiative.
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